Continued artificial selection for running endurance in rats is associated with improved lung function.
نویسندگان
چکیده
Previous studies found that selection for endurance running in untrained rats produced distinct high (HCR) and low (LCR) capacity runners. Furthermore, despite weighing 14% less, 7th generation HCR rats achieved the same absolute maximal oxygen consumption (Vo(2max)) as LCR due to muscle adaptations that improved oxygen extraction and use. However, there were no differences in cardiopulmonary function after seven generations of selection. If selection for increased endurance capacity continued, we hypothesized that due to the serial nature of oxygen delivery enhanced cardiopulmonary function would be required. In the present study, generation 15 rats selected for high and low endurance running capacity showed differences in pulmonary function. HCR, now 25% lighter than LCR, reached a 12% higher absolute Vo(2max) than LCR, P < 0.05 (49% higher Vo(2max)/kg). Despite the 25% difference in body size, both lung volume (at 20 cmH(2)O airway pressure) and exercise diffusing capacity were similar in HCR and LCR. Lung volume of LCR lay on published mammalian allometrical relationships while that of HCR lay above that line. Alveolar ventilation at Vo(2max) was 30% higher, P < 0.05 (78% higher, per kg), arterial Pco(2) was 4.5 mmHg (17%) lower, P < 0.05, while total pulmonary vascular resistance was (insignificantly) 5% lower (30% lower, per kg) in HCR. The smaller mass of HCR animals was due mostly to a smaller body frame rather than to a lower fat mass. These findings show that by generation 15, lung size in smaller HCR rats is not reduced in concert with their smaller body size, but has remained similar to that of LCR, supporting the hypothesis that continued selection for increased endurance capacity requires relatively larger lungs, supporting greater ventilation, gas exchange, and pulmonary vascular conductance.
منابع مشابه
Effect of L-Carnitine Consumption and Endurance Training on Lung Tissue Structure Damage in Male Boldenone-Poisoned Rats
Background: Performing endurance training and taking L-carnitine supplements is effective in improving the performance of athletes, but its effect on repairing lung damage caused by boldenone injection is still unknown. Objective: The present study aims to assess the effect of L-carnitine consumption alone with endurance training on lung tissue structure damage in male rats poisoned with bolde...
متن کاملPhenotypic and evolutionary plasticity of body composition in rats selectively bred for high endurance capacity.
We investigated the effects of genetic selection and prolonged wheel access (8 wk) on food consumption and body composition in lines of rats selected for high and low intrinsic (untrained) endurance running capacity (HCR and LCR, respectively) to test the generality of phenotypic correlations between physical activity levels, aerobic capacity, and body composition. HCR rats ran more minutes per...
متن کاملVascularity of myocardium and gastrocnemius muscle in rats selectively bred for endurance running capacity.
We tested the hypothesis that changes in the arteriolar branching architecture contributed to increased running capacity of rats subjected to two-way artificial selection for intrinsic aerobic endurance treadmill running capacity resulting in strains of low-capacity and high-capacity endurance rats. Hearts and gastrocnemius muscles were harvested from each strain, and the microvasculature's bra...
متن کاملArtificial selection for intrinsic aerobic endurance running capacity in rats.
Artificial selection for intrinsic aerobic endurance running capacity was started using genetically heterogeneous N:NIH stock of rats as a founder population (n = 168). Selection for low and high capacity was based upon distance run to exhaustion on a motorized treadmill using a velocity-ramped running protocol. The starting velocity was 10 m/min and was increased by 1 m/min every 2 min (slope ...
متن کاملGenistein preserves the lungs of ovariectomized diabetic rats: addition to apoptotic and inflammatory markers in the lung
Objective(s): The role of isoflavones in pulmonary structure and function during menopause is not well studied. Moreover, the important role of estrogen in the physiological function of respiratory system has been revealed. Genistein, as an isoflavone, mimics estrogenic in diabetic and ovariectomized rats. Here, we hypothesized that genistein would reverse changes in the protein expression leve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of applied physiology
دوره 106 6 شماره
صفحات -
تاریخ انتشار 2009